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ABSTRACT

An algorithm is developed to determine the flight icing threat to aircraft utilizing quantitative information

on clouds derived from meteorological satellite data as input. Algorithm inputs include the satellite-derived

cloud-top temperature, thermodynamic phase, water path, and effective droplet size. The icing-top and -base

altitude boundaries are estimated from the satellite-derived cloud-top and -base altitudes using the freezing

level obtained from numerical weather analyses or a lapse-rate approach. The product is available at the

nominal resolution of the satellite pixel. Aircraft pilot reports (PIREPs) over the United States and southern

Canada provide direct observations of icing and are used extensively in the algorithm development and

validation on the basis of correlations with Geostationary Operational Environmental Satellite imager data.

Verification studies using PIREPs, Tropospheric AirborneMeteorological Data Reporting, and NASA Icing

Remote Sensing System data indicate that the satellite algorithm performs reasonably well, particularly

during the daytime. The algorithm is currently being run routinely using data taken from a variety of satellites

across the globe and is providing useful information on icing conditions at high spatial and temporal reso-

lutions that are unavailable from any other source.

1. Introduction

It is natural for clouds to contain supercooled liquid

water (SLW) droplets at altitudes where the air tem-

perature is below freezing. When SLW comes in contact

with a hard surface such as the frame of an aircraft, it

freezes, thereby icing the airframe. As ice accumulates

on an aircraft, it alters the airflow, which can increase

drag and reduce the ability of the airframe to create lift,

leading to control problems with potentially disastrous

consequences. Over the last half-century, a significant

percentage of weather-related aviation accidents have

been attributed to icing (National Aviation Safety Data

Analysis Center 2005). Typically, the flight icing threat

(FIT) to aircraft is reduced by avoidance or by protecting

the aircraft with deicing and/or anti-icing equipment.

Severe icing can overwhelm an aircraft’s icing pro-

tection system, however. Model analyses, forecasts, and

pilot reports (PIREPs) currently constitute much of the

database available to pilots for assessing the icing con-

ditions in a particular area. Such data may be uncertain

or sparsely available. Icing conditions can be highly

variable, often occurring in small areas that cannot be

resolved with current icing diagnosis and forecasting

methods, which tend to overestimate the areal coverage

of the FIT. Thus, avoidance can be expensive, resulting

in significant increases in flight time or delays on the

ground. Although there have been improvements in

systems to mitigate aircraft icing, no aspect of aircraft

operations is immune to the threat.

The intensity of aircraft icing depends on meteoro-

logical factors, including the cloud temperature, liquid
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water content, and droplet size (Rasmussen et al. 1992),

and the level of severity depends on the intensity as well

as on characteristics of the airframe and flight parame-

ters. Because it is possible to infer these meteorological

factors, or closely related cloud parameters, from sat-

ellite data (Minnis et al. 1995, 2004, 2011a), and because

SLW is often found to reside in the top several hundred

meters of cloud layers (Rauber and Tokay 1991), satel-

lite data can be used advantageously to diagnose icing

conditions. Curry and Liu (1992) developed an icing

product that is based on cloud parameters derived for

SLW clouds using microwave satellite remote sensing

data. This technique is limited to the data with relatively

low spatial and temporal resolution taken over oceanic

regions from spaceborne meteorological microwave

sensors, and this is perhaps most relevant for military

applications. Ellrod and Nelson (1996) developed a

multispectral thresholding technique using Geosta-

tionary Operational Environmental Satellite (GOES)

imager data to discriminate clouds likely to be com-

posed of SLW at cloud top. That product was later en-

hanced with estimates of cloud-top altitude to provide

an upper altitude boundary for the icing layer (Ellrod

and Bailey 2007), but no information on the base alti-

tude or icing intensity was determined. Thompson et al.

(1997) used satellite data to improve icing diagnoses on

the basis of numerical weather analyses by eliminating

areas with warm cloud tops.

Bernstein et al. (2005) describe methods to identify

and forecast areas with potential aircraft icing condi-

tions by blending relevant data from multiple sources

such as satellite, surface, radar, lightning, and routine

PIREPs with model forecasts of temperature, relative

humidity, SLW, and vertical velocity. The current and

forecast icing products (CIP and FIP, respectively) re-

sulting from this comprehensive approach are proving

useful to the aviation community and are available over

the contiguous United States (CONUS) and southern

Canada in near–real time as supplementary information

at the National Oceanic and Atmospheric Administra-

tion (NOAA) Aviation Weather Center. Although re-

search is under way for incorporating satellite-derived

cloud properties in the CIP (Haggerty et al. 2008), the

current version only uses satellite data in a rudimentary

way as in Thompson et al. (1997). Smith et al. (2000)

employed a theoretically based cloud parameter re-

trieval system to identify SLW clouds and found excel-

lent correspondence with icing PIREPs provided that

high-level ice clouds did not obscure the satellite field of

view. Smith et al. (2003) found reasonably good corre-

spondence between the cloud liquid water path (LWP)

and effective radius Re derived for SLW clouds from

GOES-8 data and similar parameters derived from

surface-based remote sensors and aircraft in situ mea-

surements. They also found a weak correlation between

the LWP and PIREP icing intensity. Minnis et al. (2004)

exploited these relationships and developed a satellite-

based icing algorithm that is based on satellite-derived

cloud parameters. Bernstein et al. (2006) found that it

was particularly useful for directing a research aircraft

into icing conditions. That algorithm was selected as the

prototype candidate algorithm for the NOAAGOES-R

program. NOAA is developing a suite of algorithms to

derive geophysical parameters from its next-generation

geostationary satellite system to improve weather fore-

casting and diagnoses of hazardous weather. Under

sponsorship by the GOES-R Algorithm Working

Group, an advanced version of the algorithm has been

developed, demonstrated, tested, and delivered to the

GOES-R program office.

The purpose of this paper is to describe the first-

generation FIT algorithm developed for GOES-R and

efforts to validate and demonstrate the potential utility

to the aviation community using current GOES data.

The theoretical basis for the algorithm is discussed, and

the current formulation is described. The satellite-based

icing diagnoses are compared with icing PIREPs, Tro-

pospheric Airborne Meteorological Data Reporting

(TAMDAR), and National Aeronautics and Space

Administration (NASA) Icing Remote Sensing System

(NIRSS) data. The paper concludes with a summary of

the validation work and expectations for future im-

provements. Note that the algorithm and nomenclature

presented here refer to the icing hazard associated with

naturally occurring SLW in the atmosphere. A more

mysterious icing hazard known to cause jet engine

power loss and damage as a result of cloud ice particle

ingestion (e.g., Mason et al. 2006) is a different phe-

nomenon that is being addressed elsewhere and in

future studies.

2. Data

Although aircraft icing conditions can form anywhere,

they are most commonly found in two geographical

regions over North America (Bernstein et al. 2007). The

first includes the Pacific Northwest, western British

Columbia in Canada, and Alaska. The second extends

from the Canadian Maritimes stretching west and

southwest to encompass the Great Lakes region, Ohio

River Valley, and Hudson Bay. Much of this area is

within the observation domain of the GOES imagers

(GOES-W and GOES-E), which are well suited to

monitor the evolution of clouds and associated weather

conditions because of their relatively high spatial and

temporal resolutions, nominally 4 km (1 km) in the
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infrared (visible), and every 15 min. There fortunately

are a number of other observing systems in this domain

that characterize icing conditions that can be used to

develop, demonstrate, and corroborate the satellite-

based FIT. Icing PIREPs, TAMDAR, and NIRSS, re-

spectively, offer direct subjective, direct objective, and

ground-based remote observations of icing conditions.

These data and their associated products are described

in more detail below.

a. GOES-derived cloud products

For over a decade, NASA Langley Research Center

(LaRC) has been routinely deriving cloud parameters

from GOES imager data and has made these products

available to the scientific and weather forecasting com-

munities (Minnis et al. 2008a). The cloud retrieval

methods were developed for application to the Moder-

ate Resolution Imaging Spectroradiometer (MODIS)

for the Clouds and the Earth’s Radiant Energy System

(CERES) global climate program (Minnis et al. 2011a)

and have been adapted for application to GOES data

beginning with GOES-8 in the late 1990s. The primary

algorithms used to derive cloud properties from GOES

radiance data are the visible–infrared–solar-infrared–

split-window technique (VISST) and solar-infrared–

infrared–split-window technique (SIST). The VISST

operates during the daytime using the 0.65-, 3.9-, 11-,

and 12- (or 13.3) mm channels, whereas the SIST oper-

ates at night using the 3.9-, 11-, and 12- (or 13.3) mm

channels. Cloudy pixels are determined using the

method described by Minnis et al. (2008b). Cloud pa-

rameters are derived for the cloudy pixels using a set of

parameterizations of the Earth–atmosphere solar re-

flectance (during daytime) and infrared emittance (day

and night) models that incorporate cloud contributions

for each relevant wavelength to match the observed

satellite radiances with radiative transfer calculations

using the assumption that each cloud layer is composed

of either ice crystals or water droplets (Minnis et al.

2011a). In the real-time processing system, the GOES

imager data are sampled from 4 km to 8 km to reduce

the latency in producing the cloud products that is due to

limited computational resources. In addition to LWP

and Re, the GOES-derived cloud products (GDCP) in-

clude the cloud phase, effective ice particle diameterDe,

ice water path (IWP), optical depth (COD), effective

temperature Tc, height Zc, and pressure Pc; cloud

thickness DZ; and cloud-top height Zt and pressure Pt.

The cloud optical properties can be derived for a wide

range of cloud thicknesses during the daytime since the

solar reflectance at visible wavelengths is sensitive to

changes in COD from values of less than 1 to values over

100. Since only infrared channels are available from

GOES at night, there is little sensitivity to variations in

COD for optically thick clouds. Thus, at night, cloud

optical properties are only derived for optically thin

clouds (COD , 6).

The LaRC CERES and GOES cloud products have

been rigorously validated with cloud parameters derived

from ground-based remote sensing and in situ data col-

lected at the U.S. Department of Energy (DOE) At-

mospheric Radiation Measurement (ARM) Program

sites (Dong et al. 2002, 2008; Smith et al. 2008, Xi et al.

2010, and others). They have also recently been favor-

ably compared to cloud parameters derived from active

remote sensors aboard the Ice, Cloud, and Land Ele-

vation Satellite (ICESat), the Cloud–Aerosol Lidar and

Infrared Pathfinder Satellite Observations (CALIPSO)

and CloudSat satellites (e.g., Minnis et al. 2008c, 2011b).

An example of the LaRC cloud products derived from

GOES-10 and GOES-12 is shown in Fig. 1, which de-

picts the retrieved cloud-top phase, Zt, COD, Re, LWP,

and the cloud-base altitude Zb, which is from the dif-

ference between Zt and DZ. These parameters provide

unique information about clouds that can be used to

infer the potential for aircraft icing. For example, the

cloud-top temperature (not shown) and cloud-top phase

can be used to detect the presence of SLW. In this ex-

ample, a large area of SLW (denoted by the cyan color in

Fig. 1a) is detected over much of the upper Midwest and

southern Canada in association with a storm system

centered over the Great Lakes. The associated SLW

droplet sizes and their densities can be inferred from the

Re and LWP images in Figs. 1d and 1e while Zt and Zb,

shown in Figs. 1b and 1f, respectively, provide upper and

lower altitude boundaries for the potential icing layers.

These satellite-derived parameters are critical inputs to

the FIT algorithm described below.

b. Icing PIREPs

PIREPs constitute the most widely available direct

observations of in-flight icing conditions, particularly

over the CONUS, and thus are used extensively in al-

gorithm development and validation despite the fact

that they have known deficiencies (Kane et al. 1998).

They are spatially and temporally biased, and the biases

are not systematic. Many years of experience with icing

research aircraft, from which icing PIREPs were rou-

tinely filed, indicate that geolocation errors are on the

order of 10–20 km [F. McDonough, University Corpo-

ration for Atmospheric Research (UCAR), 2010, per-

sonal communication]. PIREPs include intensity reports,

which should be useful for validating the satellite algo-

rithm. The intensity reports are subjective, however, and

are based on pilot experience as well as on airframe and

flight characteristics, and thus they can be difficult to
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interpret. A typical distribution of icing-intensity PIREPs

shown in Fig. 2 for two winter periods over the CONUS

indicates that most of the positive reports fall into only

two of the eight possible intensity categories and that

there are relatively few negative (‘‘no icing’’) re-

ports. Icing PIREPs have been found to be useful

for validating icing detection (Smith et al. 2000) but

are inappropriate to compute standard measures of

FIG. 1. Select cloud parameters derived from GOES-E and GOES-W at 1745 UTC 8 Nov 2008: (a) cloud-top phase, (b) cloud-top

altitude (kft; 1 ft 5 0.3048 m), (c) COD, (d) effective droplet size (mm) for liquid clouds, (e) LWP (g m22), and (f) base altitude (kft).

These and other satellite-derived products are available online (http://angler.larc.nasa.gov).
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overwarning, such as the false-alarm ratio (FAR; Brown

and Young 2000).

c. TAMDAR

TAMDAR is the sensor currently deployed on ap-

proximately 400 commercial aircraft operating over the

CONUS, Alaska, and Canada. TAMDAR is a low-cost

sensor that was developed by AirDat, LLC, for NASA.

It is designed tomeasure and report winds, temperature,

humidity, turbulence, and icing from regional commer-

cial aircraft (Daniels 2002). The TAMDAR icing sensor

contains two independent infrared emitter–detector

pairs mounted on the probe to detect ice accretion. The

accretion of at least 0.5 mm of ice on the leading edge

surface will block the beams and result in a positive

detection. When ice is detected, internal heaters

mounted within the probe melt the ice and the mea-

surement cycle repeats. The heaters are powered for at

least 1 min and the deicing cycle occurs each time ice is

detected. The icing data are given as yes (icing) or no

(no icing) reports. Thus, TAMDAR provides a direct,

objective measure of the occurrence of in-cloud icing.

Potential information on the icing intensity is not cur-

rently being extracted from the measurements. Data

collected during the Great Lakes Fleet Experiment

(GLFE) in 2005 are analyzed here to provide an initial

assessment of their utility for validating the satellite

FIT. The current TAMDAR deployment has shifted to

include the western states and Alaska. These data will

be analyzed in a future study.

d. NIRSS

The NIRSS has been collecting valuable information

on icing conditions since 2005 at the NASA Glenn Re-

search Center in Cleveland, Ohio. This location is well

situated for observing icing conditions because it lies in

the heart of a climatological icing bull’s-eye (Bernstein

et al. 2007). The NIRSS was developed to demonstrate

a ground-based remote sensing system concept that

could provide accurate detection and warning of in-

flight icing conditions in the near-airport environment.

The system fuses data from radar, lidar, and multifre-

quency microwave radiometer sensors to quantify the

icing environment and compute the icing hazard

(Reehorst et al. 2009) on the basis of the expected ice

accretion severity for the measured environment

(Politovitch 2003). Although the system does not mea-

sure icing directly, this remote sensing concept appears

to offer some advantages for satellite validation that are

not found elsewhere. For example, it appears that these

unique data could help to quantify the FIT algorithm

FAR, which cannot be done reliably with PIREPs or

TAMDARdata. Several years of NIRSS data have been

analyzed, and comparisons with the FIT derived from

GOES are presented below.

3. Satellite methods

The potential for in-cloud aircraft icing and its se-

verity depend on many factors related to the particular

aircraft and the weather conditions. Some aircraft will

accumulate ice in certain conditions while other aircraft

will remain ice free in the same cloud. These aircraft-

related factors are not considered here. Meteorological

factors that contribute to icing intensity and severity

include the concentration of supercooled water droplets

and the droplet sizes. In general, larger droplets and/or

larger concentrations of droplets or higher liquid water

content (LWC) contribute to more severe icing. The

satellite-derived Re is related to the cloud droplet sizes

while the derived LWP is related to the concentration

since it is an estimate of the vertically integrated LWC.

Correlations found between the satellite-derived LWP

andRewith icing PIREPs (Smith et al. 2003;Minnis et al.

2004) suggest that some information on icing intensity

may be contained in the satellite data. The current

version of the FIT algorithm has been developed 1) to

exploit these relationships during the daytime for clouds

that can be determined to pose an icing threat to aircraft

because of the presence of SLW and 2) to take advan-

tage of the capability to resolve highly variable cloud

properties with high-resolution satellite data, as de-

picted in Fig. 1.

FIG. 2. PIREP icing intensity for twowinter periods (November–

March 2006/07 and 2007/08) over the CONUS. The classification

strategy for the two-category satellite technique is also indicated.
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a. Icing mask

Because SLW is a prerequisite for aircraft icing, the

first step in the satellite FIT algorithm is to identify

cloudy areas where SLW is likely to exist. An icing mask

is constructed for each geolocated pixel with valid ra-

diance data and for which the cloud algorithms have

been properly executed and have returned valid re-

trievals. The purpose of the icing mask is to determine,

to the extent possible, which cloudy pixels pose an icing

threat to aircraft on the basis of the retrieved cloud-top

temperature Tt, thermodynamic phase, and COD and to

differentiate these pixels from clear and cloudy pixels

that pose no icing threat or for which the icing threat

cannot currently be determined (e.g., pixels composed

of high-altitude optically thick ice-phase-topped clouds,

or multilayered thin-ice-cloud-over-thick-liquid-cloud

systems). The simple logic adopted to map the cloud-top

phase and COD to the icing mask is shown in Table 1. A

Tt 5 272 K is used to distinguish warm water clouds

from SLW clouds. For SLW clouds, a COD threshold of

1.0 is chosen to eliminate the very thinnest clouds as-

sociatedwith very lowLWCvalues from the icing threat.

For ice-phase-topped clouds, a COD threshold of 6.0 is

used to eliminate thin clouds that are unlikely to overlap

SLW clouds, while the icing threat for optically thicker

clouds (COD. 6), which may or may not overlap SLW

clouds, is considered to be unknown. The icing mask

derived using the data from Fig. 1 is shown in Fig. 3

along with the icing intensity reported by pilots near the

same time. Good correspondence is apparent between

the icing PIREPs and the cyan areas representing po-

tential icing conditions in the satellite-derived icing

mask. Areas where there is no icing and where the icing

threat cannot be determined are denoted by the gray

and white colors, respectively.

b. Supercooled liquid water path

A potential issue in using an integral parameter such

as the LWP as a proxy for icing in clouds with SLW tops

is that it may include the mass of warm cloud water for

clouds that extend to altitudes below the freezing level.

A simple approach is adopted to estimate the super-

cooled fraction of the total LWP (SLWP) to eliminate

the warm cloud mass from the icing threat. The ap-

proach requires knowledge of the cloud geometric

thickness, the freezing level, and the vertical distribution

of liquidwater. The freezing levelZfr is obtained from the

satellite-derived Tt and Zt, assuming a moist-adiabatic

lapse rate:

Zfr5Zt 1 (Tt 2 273:15K)/6:5. (1)

The cloud geometric thickness DZ is obtained using

empirical formulas that depend on the COD (for water

clouds) as described in Minnis et al. (2011a). For liquid

water clouds,

DZ5 0:39 ln(COD)2 0:01. (2)

TABLE 1. Logic table for mapping the cloud phase and optical

depth products to the icing mask.

Cloud phase COD Icing mask

Clear — No icing

Water All No icing

SLW COD . 1.0 Icing

SLW COD # 1.0 No icing

Ice COD # 6.0 No icing

Ice COD . 6.0 Unknown

FIG. 3. (a) Icing mask at 1745 UTC and (b) corresponding pilot reports of icing intensity from 1600 to 2000 UTC 8

Nov 2008. The PIREP image was obtained online from the NOAA/National Weather Service (NWS) Aviation

Weather Center (http://aviationweather.gov/adds/pireps/java/).
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The minimum allowable DZ is 0.02 km. The cloud-base

altitude Zb is

Zb 5Zt 2DZ . (3)

For this study, a uniform vertical distribution of cloud

liquid water is assumed. Thus, in this version, we define

the SLWP as

SLWP5LWP (Zb$Zfr) and (4)

SLWP5LWP(Zt 2Zfr)/DZ (Zb ,Zfr) . (5)

c. Icing probability and intensity

Because of the nature of icing PIREPs and, in par-

ticular, of the fact that most positive icing-intensity re-

ports fall into just two of the eight available intensity

categories (light and moderate), a strategy is adopted to

recategorize the eight intensity levels into two broader

categories to serve as a more realistic target for the in-

tensity component of the satellite algorithm. Hereinaf-

ter, ‘‘light’’ icing will be used to refer to reports in the

first three PIREP intensity categories (trace, trace–light,

and light), and ‘‘moderate or greater’’ (MOG) icing

will refer to the other categories (light–moderate,

moderate, moderate–heavy, heavy, and severe), as

indicated in Fig. 2.

The icing PIREPs shown in Fig. 2 were matched with

the coincident GDCP derived from GOES-11 and

GOES-12 data taken over the CONUS to find re-

lationships between icing and the satellite-derived cloud

properties. Given the uncertainties in the PIREP loca-

tions, the satellite results were averaged in a 20-km-

radius region centered at the location of each icing

PIREP (about twenty-five 8-km pixels). This analysis

was restricted to overcast SLW scenes as determined by

the LaRC cloud-phase retrieval and to daytime [solar

zenith angle (SZA) , 828] data. Figure 4 depicts the

frequency of occurrence of none, light, and MOG icing

reports as a function of the GOES-derived SLWP. The

results from the 1359 matches are binned in increments

of 100 g m22. As SLWP increases, the number of negative

and light icing reports decreases while the number of

moderate or greater reports increases. Despite the

aforementioned uncertainties associated with icing

PIREPs and their superposition on high-resolution cloud

fields such as the GOES-derived SLWP, which may be

highly variable, the results in Fig. 4 are encouraging.

Moreover, they are physically realistic considering that

larger values of LWP are likely to be associated with

larger values of LWC and/or larger cloud thickness.

Thicker SLW clouds may be associated with an increased

icing threat because of the likelihood that they increase

the aircraft’s exposure time to SLW as it passes through

the cloud.

Using the data in Fig. 4, the probability of icing was

computed as a function of SLWP. Those values were

multiplied by the probability of icing found from the

data for values of Re 5 5 mm (composed of data with

Re , 8 mm) and Re 5 16 mm (composed of data with

Re $ 16 mm). These two sets of data were normalized

to yield a 100% probability of icing for SLWP 5
1050 g m22 and Re 5 16 mm. These threshold values

were chosen somewhat arbitrarily on the basis of visual

interpretation of the data, since more definitive values

could not be determined empirically. Thus, it is assumed

that the combination of SLWP andRe values at or above

these thresholds yields a 100% probability for icing. The

probabilities and best-fit curves for the two values of Re,

intended to represent the upper and lower limits, are

shown in Fig. 5. In this procedure, the negative icing

reports were duplicated several times to account for the

sampling bias relative to positive icing reports that is

apparent in Fig. 2. This bias in negative reports is due to

the lack of incentive to report no icing. The results

shown in Fig. 5 are consistent with our theoretical un-

derstanding of icing, indicating an increased likelihood

of icing with increased SLWP and Re. From these re-

sults, the icing probability (IP) is formulated in the FIT

algorithm as

IP5 0:252 log10(SLWP)2 0:110 (Re5 5mm) and

(6)

FIG. 4. Relative frequency of icing PIREPs vs GOES-derived

SLWP for two winter periods (November–March 2006/07 and

2007/08) over the CONUS. The two-bin PIREP intensity cate-

gories are denoted as light and MOG, as in Fig. 2.
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IP5 0:333 log10(SLWP)2 0:015 (Re 5 16mm). (7)

Linear interpolation between the results of (6) and (7) is

used for pixels withRe between 5 and 16 mm. Pixels with

larger or smaller values of Re are assigned the appro-

priate extreme value. Values of IP, 0.4 are classified as

low probability. For values between 0.4 and 0.7, pixels

are classified as medium probability, and values ex-

ceeding 0.7 are classified as high probability.

Table 2 lists the results of a statistical analysis per-

formed on the matched satellite and icing PIREP data-

set to determine any relationships between the GDCP

and icing intensity. Themean and standard deviation for

a number of satellite-derived cloud parameters are

shown. When the values were computed with all of the

matched data, themean results indicate that, on average,

there is little dependency found between icing-intensity

PIREPs and Re. There are several possible explanations

for this result. In this analysis, Re has been derived from

the highly absorbing 3.9-mm channel, available on

current GOES, which is mostly sensitive to cloud

droplets very close to cloud top. It is possible that the

cloud-top information extracted from this channel is

not very representative of the droplet size spectra

affecting icing conditions as reported by pilots, when

the aircraft is well below cloud top. The scattering

phase function for cloud hydrometeors is also very

sensitive to droplet size when the solar angles and

satellite viewing geometry are such that strong back-

scatter occurs, which may result in larger uncertainties

or noise in the Re retrievals. This phenomenon occurs

in the late morning (early afternoon) for GOES-E

(GOES-W) over the CONUS in the autumn and

winter months when icing is most prevalent. More

work is needed to reduce uncertainties in Re retrievals

using other satellites, multiple-wavelength Re re-

trievals, and perhaps improved forward models to

better understand and quantify any relationships be-

tween Re and aircraft icing. A stronger dependence is

found for the LWP, but there is not much separation

between the mean LWP found for the light and MOG

categories shown in the mean results when using all of

the data.

To reduce the potential ambiguity associated with

temporal and spatial matching errors on the correlations

shown in the results for all data in Table 2, a strategy was

adopted to filter the data. In the filtering procedure, a set

of conservative SLWP thresholds is set for specific

PIREP icing intensities on the basis of the assumption

that the two are positively correlated as shown in Fig. 4.

Thus, in the filtered dataset, the matched data are

eliminated for the following scenarios: 1) all positive

icing reports, if SLWP , 50 g m22; 2) all positive icing

reports with MOG icing intensity, if SLWP ,
200 g m22; 3) all icing reports, if the intensity is less than

light and the SLWP. 750 g m22; and 4) all icing reports

with light or less intensity if SLWP. 1000 g m22. About

20% of the original matched data are absent in the fil-

tered dataset. Much stronger sensitivity to LWP is found

in the filtered dataset (Table 2) since the correlation

FIG. 5. Renormalized probability of in-cloud aircraft icing as

a function of satellite-derived LWP and model fit for two values

of Re.

TABLE 2.Mean and standard deviation (in parentheses) found for satellite-derived cloud parametersmatchedwith icing PIREPs during

winters of 2006/07 and 2007/08 in three categories: 05 no icing, 15 light icing, and 25moderate or greater icing. Results are shown for the

entire matched dataset (‘‘all data’’) and for the filtered dataset (‘‘filtered data’’).

Cloud property

(GOES)

PIREP intensity (all data) PIREP intensity (filtered data)

0 1 2 0 1 2

COD 35.98 (25.41) 42.89 (28.49) 49.60 (29.32) 31.25 (22.52) 35.74 (21.98) 56.71 (27.64)

Re (mm) 11.65 (3.17) 12.03 (3.11) 12.11 (3.02) 11.35 (2.68) 12.00 (3.15) 12.11 (2.95)

LWP (g m22) 460.56 (569.58) 614.21 (653.18) 715.54 (678.19) 321.61 (369.75) 381.67 (317.59) 836.65 (694.14)

SLWP (g m22) 332.31 (444.03) 530.65 (592.64) 671.68 (664.48) 193.16 (160.45) 338.91 (232.74) 805.90 (676.69)

Tc (K) 263.39 (4.44) 262.65 (3.96) 262.05 (3.62) 263.62 (4.45) 262.61 (3.87) 261.84 (3.50)

DZ (km) 1.23 (0.36) 1.34 (0.37) 1.43 (0.36) 1.17 (0.33) 1.27 (0.29) 1.51 (0.34)

No. 90 838 431 79 659 346
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between the icing intensity and the LWP has increased.

Also note that the filtered dataset generally produces

much lower LWP standard deviations. From a statisti-

cal point of view, there is arguably good reason to

employ the filtering procedure to both develop and

validate the algorithm, but the procedure is somewhat

arbitrary, and there is no guarantee or requirement that

independent evaluators of the algorithm would also

employ it. Thus, we have developed an approach to

determine intensity thresholds for the current version

of the FIT algorithm using all of the matched (un-

filtered) data. We have, however, chosen to report the

results that are shown in Table 2 to provide the mean

cloud properties found for this icing dataset and to

demonstrate the improved sensitivity of the LWP and

SLWP to icing intensity reported by pilots when

a simple filtering procedure is applied.

The filtering procedure is also employed in our valida-

tion studies (section 4) to help to bound the uncertainties.

For the current algorithm, intensity thresholds were

derived, using the unfiltered dataset, by iteratively de-

termining the SLWP threshold that maximizes both the

probability of detection for the light (PODL) andMOG

(PODM) categories. Different thresholds were derived

for snow and snow-free scenes since the snow albedo

was not accounted for in this version of the LaRC cloud

analyses. The bright snow background could bias the

cloud microphysical property retrievals. An example for

the snow-free dataset is shown in Fig. 6, which indicates

a maximum POD of 0.55 for the two intensity categories

at an SLWP threshold of 379 g m22. Daily snow maps

obtained from the National Snow and Ice Data Center

(now available from the National Ice Center: http://

www.natice.noaa.gov) are used to stratify the matched

satellite–PIREPs dataset for snow and snow-free

scenes. Table 3 summarizes the SLWP thresholds and

the intensity POD (PODL is equal to PODM in this

technique) found following this approach for snow,

snow-free, and all surfaces.

d. Algorithm output

The satellite-derived icing mask, probability, and in-

tensity are combined to form the FIT index, depicted in

Table 4, which is the primary output of the FIT algorithm.

The FIT index is color coded for display purposes and is

illustrated in Fig. 7 for the 8 November 2008 case. In

general, there is good correspondence between the FIT

output and the icing-intensity PIREPs shown in Fig. 3b.

That is, warmer colors associated with more severe icing

and the cooler colors associated with less severe or no

icing tend to match reasonably well on a large scale. It is

apparent how much more information the current FIT

product can provide during the daytime when compared

with a binary yes/no icing product (e.g., icing mask in Fig.

3). The approach described here may resolve some of the

natural variability in the FIT to a significant degree but, of

course, needs to be validated to the extent possible.

4. Verification

To help to gain an understanding of the potential

utility of the satellite-based FIT product to the aviation

FIG. 6. Probabilities of detecting light andMOG icing conditions

as a function of the GOES-derived SLWP in snow-free conditions

during the winters of 2006/07 and 2007/08.

TABLE 3. The two-category intensity thresholds and probability

of detection found using the satellite-derived SLWP over snow

(100% coverage), snow-free (0% coverage), and all surfaces for

consecutive winters (November–March) between 2006 and 2008.

Surface SLWP (g m22) POD (%) N

All 405 58 2341

Snow 475 63 735

No snow 379 55 1310

TABLE 4. FIT index output from the satellite FIT algorithm.

FIT index Description

27 No retrieval/bad data

29 Missing data/other

0 No icing

1 Unknown

2 Low probability of light icing (daytime

only: SZA , 828)
3 Medium probability of light icing (daytime

only: SZA , 828)
4 High probability of light icing (daytime

only: SZA , 828)
5 High probability of MOG icing (daytime

only: SZA , 828)
6 Icing possible (Nighttime only: SZA $ 828)
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community, icing information from PIREPs, TAMDAR,

and NIRSS is used for intercomparison. Each dataset

has unique advantages and disadvantages (described

briefly in section 2), with their own associated un-

certainties that may not be well understood in some

cases. Because the satellite FIT algorithm has no vertical

resolution and produces a bulk icing index limited to

SLW-topped clouds (generally lower-level clouds with

limited vertical extent that are not obscured by high-

level clouds), and considering the uncertainties in

satellite-derived boundary layer cloud heights and the

uncertainties associated with the validation data, we have

excluded altitude in our validation thus far. Thematching

approach that has been adopted here ensures to the ex-

tent possible that the satellite and validation data rep-

resent the same cloud volume. It is also important to

emphasize again that aircraft icing is not just a meteo-

rological phenomenon, but depends on characteristics of

the airframe, flight trajectory, residence time, and other

factors. Furthermore, there is currently no accepted

definition for icing severity that is based on cloud mi-

crophysical parameters (e.g., LWC or Re) or the accre-

tion rate on an airframe (M. Politovitch, UCAR, 2010,

personal communication).

Despite the somewhat ill-defined nature of aircraft

icing, a method was developed to quantify the potential

accuracy of the satellite product by correlating it with

icing information extracted from PIREPs, TAMDAR,

and NIRSS data. The data were matched in time and

space for overcast conditions to eliminate any ambi-

guity that might arise in partly cloudy conditions. Two-

by-two contingency tables are constructed to help to

quantify the intercomparisons with standard skill

scores (e.g., Wilks 2006). Each cell in the table provides

the frequency with which a particular observation or

estimate occurs at a specific threshold. Two sets of

contingency tables are formed. The first table is com-

posed of yes or no icing frequencies to test the icing-

detection capability, as in Table 5. The second table is

composed of light or MOG icing frequencies to test the

icing-intensity capability, as in Table 6. The set of skill

scores computed, and discussed below, is defined in

Table 7.

a. Comparisons with icing PIREPs

The FIT derived from GOES-11 and GOES-12 was

compared with icing PIREPs over the CONUS between

FIG. 7. Flight icing threat derived from GOES at 1745 UTC 8 Nov 2008.

TABLE 5. Contingency table describing possible outcomes for icing

detection.

Icing detected by satellite

Icing observed

Yes No

Yes h (hit) f (false alarm)

No m (miss) n (correct negatives)
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1 November and 31 March 2008–09 and 2009–10. This

dataset is independent from that used in the algorithm

development (2006–08). In this analysis, all pixels within

20 km and 15 min of each icing PIREP were matched

under the condition that the 20-km-radius region was

completely overcast. Regions containing any SLW are

considered to be positive detections from GOES. This

strategy resulted in 22 551 and 9851 matches during the

daytime and nighttime, respectively. The skill in de-

tecting icing conditions was determined from the con-

tingency tables shown in Tables 8 and 9. The PODY,

PODN, and accuracy are 62%, 42% and 61% (56%,

54%, and 56%), respectively, during daytime (night-

time). False detections are common, but compose only

a small percentage of the total (FAR5 5%–6%). These

results are nearly identical to those found by Ellrod

and Bailey (2007) during wintertime. The large number

of misses is due to the fact that this version of the sat-

ellite FIT algorithm, like that of Ellrod and Bailey

(2007), cannot detect icing conditions below high-level

ice clouds. When these ‘‘undetectable’’ conditions are

eliminated from the validation dataset, the satellite FIT

algorithm performance is much better. Tables 10 and 11

depict the contingency tables for the same data used to

construct Tables 8 and 9 but excluding the cases with

high optically thick ice cloud. Under these conditions,

the PODY, PODN, and accuracy are found to be 98%,

6%, and 93% (64%, 49%, and 63%), respectively, dur-

ing daytime (nighttime). It is not possible to adequately

quantify false alarms using icing PIREPs because of the

low bias in ‘‘no icing’’ observations (Brown and Young

2000). PODN is also highly uncertain and misleading

for the same reason. The high values of PODY and

accuracy found for the daytime data indicate that the

satellite technique has an excellent detection capability

relative to positive icing PIREPs, provided high clouds

do not obscure the satellite view. The skill at night is

good but is less than that found during the daytime be-

cause of the availability of just a few infrared channels

that have poor sensitivity to optically thick cloud mi-

crophysical properties.

A contingency table was formed to test the two-

category intensity component of the FIT algorithm

during daytime for overcast SLW regions (number N 5
5711) and is shown in Table 12. The probabilities of

detecting light (PODL) and moderate or greater

(PODM) icing conditions are 59% and 57%, re-

spectively, and the accuracy is 58%. Considering the

uncertainties associated with icing PIREPs and the as-

sociated difficulties in accurately matching the reports to

satellite data, these comparison results are probably

reasonable. The data were also stratified for snow and

snow-free scenes. The intensity accuracy was also found

to be 57% for both, which is an encouraging consis-

tency indicating that the LWP thresholds developed

with the 2006–08 data (Table 3) worked relatively well

for the 2008–10 dataset. Better results were found using

the filtering procedure described in section 3, which

eliminates about 15% of, what appear to be, the more

ambiguous data and yields a PODL, a PODM, and an

intensity accuracy of 67%, 69%, and 67% respectively.

Figure 8 depicts a frequency histogram of cloud-top

temperatures for all of the matched satellite and icing

PIREP data used in this study between November 2006

and March 2010. The percentage of clouds with bases

estimated to be below the freezing level is indicated for

each 5-K temperature bin and is found to occur about

25% of the time, overall. To gauge the impact of our

strategy to partition the cloud mass for the subfreezing

portion (SLWP), the algorithm was also evaluated with

data using intensity thresholds developed in the same

manner described earlier but using the LWP rather than

the SLWP. The overall improvement in the intensity

accuracy using the SLWP approach is just a few percent

TABLE 6. As in Table 5, but for icing intensity.

Satellite intensity

Observed intensity

Light MOG

Light hL (light hit) mM (MOG miss)

MOG mL (light miss) hM (MOG hit)

TABLE 7. Contingency-table scoring definitions.

Score Meaning Formula

PODY Probability of detecting icing h/(h 1 m)

PODN Probability of detecting no icing n/(f 1 n)

FAR False-alarm ratio f/(h 1f)

Accuracy Icing-detection accuracy (h 1 n)/(h 1 m 1 f 1 n)

TSS True skill score PODY 1 (1 2 PODN).

PODL Probability of detecting light icing hL/(hL 1 mL)

PODM Probability of detecting MOG icing hM/(hM 1mM)

Intensity accuracy Icing-intensity accuracy (hL 1 hM)/(hL 1 mL 1 mM 1 hM)
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when evaluating all of the data. However, when con-

sidering only the data for which SLWP and LWP differ

(occurs 25% of the time), a relative accuracy im-

provement of about 20% is realized using the SLWP

approach.

b. Comparisons with NIRSS

The NIRSS icing retrieval uses ground-based remote

sensing data to estimate the FIT over a single surface site

(Reehorst et al. 2009) in Cleveland, Ohio. Although

icing is not measured directly, NIRSS provides an ob-

jective estimate using active and passive remote sensors

(i.e., microwave radiometer, cloud radar, and ceilome-

ter) and thus has the capability to provide vertical res-

olution, with some assumptions. In theNIRSS approach,

the vertical distribution of supercooled liquid water is

estimated using climatological profiles that are based

partially on experience and measurements taken from

the NASA Glenn Twin Otter during icing research air-

craft missions, and using the cloud radar reflectivity

measured at the site. The profiles are constrained with

the integrated liquid water (LWP) inferred from the

microwave radiometer and cloud boundaries derived

from the radar and ceilometer. For the subfreezing

portion of the cloud, LWC is converted to eight levels of

icing intensity with relationships that were developed

from an airfoil modeling study (Politovitch 2003). An

example of the NIRSS icing retrieval is shown in Fig. 9

along with the corresponding cloud boundaries and

FIT derived from GOES on 12 February 2010. For this

case, there is reasonably good agreement between the

satellite-derived cloud boundaries and FIT with the

NIRSS results.

Three years of NIRSS icing retrievals taken between

2008 and 2010 were analyzed and matched with the

satellite data when the GDCP indicated overcast con-

ditions. The icing threat was estimated from the GOES

data using pixels within 20 km of the site. A bulk icing

intensity was computed from the NIRSS results, for di-

rect comparison with the satellite FIT, by averaging the

vertical mean NIRSS LWC over a 20-min period cen-

tered at the time when GOES-12 scanned Cleveland.

The mean LWC was converted to icing intensity using

the NIRSS conversion factors and the same categorical

partitioning shown in Fig. 2. Contingency tables were

constructed as before to evaluate the estimates of sat-

ellite icing detection and intensity relative to the NIRSS

data. For this dataset, there were 885 matches, including

174 cases with high ice cloud obscuration. PODY,

PODN, FAR and TSS were found to be 76%, 62%,

10%, and 38%, respectively. With respect to NIRSS

data, the FIT-algorithm icing-detection accuracy is 73%.

As before, eliminating the ‘‘unknown’’ cases yielded

different statistics. In that case, the accuracy is 90%, and

the PODY, PODN, FAR, and TSS are found to be

100%, 22%, 10%, and 22%, respectively. The low values

of PODN and TSS are due to the relatively low number

of no-icing cases (most of the NIRSS data were obtained

during winter), and to a significant number of false

alarms due to thin cirrus contamination in the satellite

retrievals. A detailed analysis of the satellite and cloud

radar imagery for the false-alarm points indicated that

many of these cases were thin cirrus over warm water

clouds, which were misclassified as SLW pixels in the

satellite analyses.

The severity component of the FIT algorithmwas also

tested relative to the NIRSS data. The PODL and

PODM were found to be remarkably consistent, with

values of 77% and 78%, respectively. The overall ac-

curacy in the FIT intensity is 77%. These results are

TABLE 8. Frequency of yes/no icing reports found for the

matched GOES–PIREP dataset constructed over consecutive

winters (November–March) between 2008 and 2010 for overcast

regions during daytime.

Icing detected by satellite

Icing observed

Yes No

Yes 13 075 790

No 8107 579

TABLE 9. As in Table 8, but during nighttime.

Icing detected by satellite

Icing observed

Yes No

Yes 5158 273

No 4104 316

TABLE 10. Frequency of yes/no icing reports found for the

matched GOES–PIREP dataset constructed over consecutive

winters (November–March) between 2008 and 2010 for overcast

regions with no high thick clouds during daytime.

Icing detected by satellite

Icing observed

Yes No

Yes 13 075 790

No 237 46

TABLE 11. As in Table 10, but during nighttime.

Icing detected by satellite

Icing observed

Yes No

Yes 5158 273

No 2859 261
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encouraging considering that the FIT algorithm is tuned

to icing PIREPs while the NIRSS intensity is tuned to

an airfoil model, and considering the different sensitiv-

ities and assumptions associated with the satellite and

ground-based remote sensing techniques.

c. Comparisons with TAMDAR

The FIT algorithm was applied to the GDCP derived

from daytimeGOES-12 data from 1 to 26April 2005 and

was compared with TAMDAR data taken during the

GLFE. The pixel-level icing parameters derived from

GOES are averaged, by spatially weighting the four

closest pixels to each TAMDAR observation taken

within 15 min of the satellite observation. There were

440 542 TAMDAR observations, of which 13 321 in-

dicated icing, 8951 indicated that the heater was on so

that icing was not detectable at that time, and the rest

indicated that no icing was observed. Unlike the rela-

tively few PIREPs (most of which are reported during

icing conditions), TAMDAR takes continuous data. As

a result, about 95% of the TAMDAR reports indicate

no icing. Thus, the GOES and TAMDAR compari-

son statistics in the results will be biased toward the

TAMDAR no-icing category if filters are not properly

applied to remove insignificant reports (e.g., from cloud-

free areas).

Figure 10 shows an example of satellite-derived icing

indices compared with the TAMDAR icing indicators

on a Mesaba Airlines flight (with TAMDAR serial

number 247) between 1800 and 1830UTC 22April 2005.

Good agreement is found for this single-layer cloud

case. The satellite FIT is a bulk index for the icing layer

as indicated by the vertical bars. The TAMDAR mea-

surements indicating yes or no icing are also plotted as

a function of altitude. During the majority of the flight

segment, the aircraft was inside the GOES-retrieved

cloud boundaries and reported icing that corresponds

well to the GOES analysis. During the descent below

cloud base, the TAMDAR no longer reported icing

while GOES still detected icing above the aircraft. This

illustrates the need to ensure, to the extent possible, that

only in-cloud TAMDAR reports be compared with the

GOES FIT.

To compare statistically the TAMDAR data with

GOES without biasing the results, only TAMDAR

reports at altitudes within the GOES-derived cloud

boundaries are used. This condition reduced the total

number of daytime TAMDAR reports (with heater

off) to 17 140. This includes 5048 cases in which icing

could not be determined from GOES because of ob-

scuration by high ice clouds. If we classify these points

as no icing from GOES, then the PODY, PODN, ac-

curacy, and FAR are found to be 45%, 67%, 72%, and

85%, respectively. Eliminating the GOES unknown

points yields values of 87%, 49%, 53%, and 85%.

Thus, a reasonable value for PODY (87%) was found

using TAMDAR, which agrees well with the values

found with the other validation datasets, but the re-

maining statistics are relatively poor. This is due to the

high number of false alarms (FAR is 84%), most of

which were determined to arise as a result of in-

accuracies in the cloud altitude boundaries derived

from GOES. Because the retrieved cloud-base and

-top heights have an uncertainty of about 1 km (Smith

et al. 2008), it is likely that many of the TAMDAR no-

icing reports outside of clouds are being included in

the statistics with the GOES icing detections. Thus,

the PODY appears to be the only derived metric with

much value, considering the comparison method used

here. We plan to use the temperature and humidity

profiles in future analyses of TAMDAR data to try

to improve the definition of the actual cloud bound-

aries penetrated by the instrumented aircraft and, it is

TABLE 12. Frequency of the two-category icing intensity found

for the matched GOES–PIREP dataset constructed over consec-

utive winters (November–March) between 2008 and 2010 for re-

gions determined from GOES to contain overcast SLW clouds.

Satellite intensity

Observed intensity

Light MOG

Light 2385 716

MOG 1675 935

FIG. 8. Frequency histogram of cloud-top temperature for all of

the matched satellite and icing PIREP data used in this study be-

tween November 2006 and March 2010. The percentage of clouds

with bases estimated to be below the freezing level is indicated for

each 5-K temperature bin.
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hoped, to improve the utility of TAMDAR data for

satellite validation.

5. Summary

In this paper, a physically based empirical technique

was developed to estimate from satellite data the FIT to

aircraft. The technique is formulated to utilize satellite-

derived cloud products as input, including Tc, cloud-top

phase, LWP, and Re. The satellite-based icing method

has been applied to current GOES data, and the re-

sults were rigorously compared with icing observa-

tions contained in PIREP, TAMDAR, and NIRSS

data. A summary of these comparisons is provided in

Table 13. During the daytime, the satellite icing de-

tection accuracies are found to range from about 60%

to 75% using the various validation sets as ground

truth in all cloud conditions. The results that are based

on comparisons with icing PIREPs are nearly identical

to those found by Ellrod and Bailey (2007), who used

a radiance thresholding technique. Much better results

are obtained if we use the satellite-derived cloud mi-

crophysical properties to screen out the cases obscured

by high ice clouds, since the presence of SLW below

these clouds cannot be inferred with current single-layer

satellite retrieval methods. Excluding these cases yields

accuracies of 90%or better when compared with NIRSS

and PIREPs. The poor accuracy found in the compari-

sons with TAMDAR can be attributed to insufficient

knowledge of when the TAMDAR sensor is reporting

no-icing conditions in cloud rather than in clear air.

From the data shown in Tables 8–11, we estimate that

roughly 35% of atmospheric icing remains undetected

using single-layer techniques, because of high cloud

obscuration. New techniques (e.g., Chang et al. 2010) to

derive cloud properties in some multilayer conditions

[i.e., thin cirrus over lower-level water clouds; see Chang

and Li (2005)] can be exploited to estimate the FIT

below high-level ice clouds with a promising degree of

accuracy. This is a topic for future research that may

FIG. 9. Comparison of flight icing threats derived from NIRSS and GOES for 12 Feb 2010. (top) NIRSS radar

reflectivity and (bottom) icing-intensity profiles with satellite-derived cloud boundary overlay (red and black circles).

Cloud base measured by ceilometer is shown for the NIRSS site (pink squares) and at a nearby NWS Automated

Surface Observing System station (white circles). Vertical and temporal aggregate NIRSS icing is indicated by

colored triangles at the bottom of the bottom panel along with the FIT derived fromGOES, which is indicated by the

colored squares.
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further improve the satellite-derived FIT under a wider

range of cloud conditions.

A significant advance in the FIT algorithm developed

here, relative to previous satellite-based icing analyses,

is an estimate of icing probability and intensity that is

based on derived cloud microphysical parameters. The

technique significantly increases the information con-

tent extracted from the satellite observations, providing

an improved dynamic range to the FIT that should be

useful to the aviation community. Relative to icing

PIREPs, the accuracy in the satellite two-category in-

tensity estimates is between 58%and 68%depending on

the degree of filtering used to reduce ambiguities that

are likely due to poor spatial and temporal matching.

Better agreement is found with NIRSS data (77% ac-

curacy), which is also encouraging, keeping in mind that

NIRSS is a ground-based remote sensing system and

does not provide a direct measure of icing intensity. The

results presented here indicate that the satellite method

has significant skill. Considering the somewhat ill-defined

nature of icing intensity and severity, as well as many is-

sues regarding the accuracy of the validation data used to

characterize aircraft icing, it is possible that the practical

utility of the method to the aviation community may be

better than the validation data suggest, but this remains to

be demonstrated.

Newer advanced imagers, with more channels and

improved horizontal resolution and spectral information

similar to that currently available on MODIS, such as

the Visible Imaging Infrared Radiometer Suite on the

Suomi National Polar-Orbiting Partnership, the Spin-

ning Enhanced Visible and Infrared Imager (SEVIRI)

on the Meteosat series deployed over Europe, and the

Advanced Baseline Imager planned for GOES-R, are

providing the impetus for research to further advance

satellite-derived cloud characterizations for icing and

other aviation weather hazards. For example, advanced

imagers can provide some capability to improve the

resolution of cloud vertical structure (e.g., Platnick

2000), which has not yet been exploited. It is also

expected that the icing-detection accuracy at night and

during the day/night transition will be somewhat better

than that shown in Table 13 because of the availability of

additional spectral information in the infrared with im-

proved sensitivity to cloud-top phase (Pavolonis 2010).

Despite the inherent bias toward ‘‘positive icing’’ re-

ports found in the validation data used in this study, we

were able to gain some understanding of potential false

alarms, which appear to occur less than 10% of the time.

A significant number of these cases appear to be due to

the inability to detect thin cirrus clouds adequately with

the current GOES imager in multilayer conditions.

Improvements can be expected in the near future that

take advantage of the improved resolution and spectral

information available from advanced imagers, as well

as improved cloud retrieval techniques, including the

multilayer methods currently being developed.

FIG. 10. Comparison of the GOES-derived flight icing threat to

yes/no icing inferred using TAMDAR sensor measurements taken

from a commercial aircraft on 22 Apr 2005 during the GLFE.

TABLE 13. Summary of the FIT capability determined fromGOES when compared with icing PIREP, TAMDAR, and NIRSS data for

all cloud conditions, and under the condition that high-level overcast ice clouds do not obscure the satellite view. The intensity accuracy

was only evaluated in overcast SLW conditions as determined from GOES.

Validation data Day/night

Icing detection

Icing-intensity accuracy (%)

All clouds Unobscured

PODY (%) Accuracy (%) PODY (%) Accuracy (%)

PIREPs Night 56 56 64 63 —

PIREPs Day (all) 62 61 98 93 58

PIREPs Day (filtered) — — — — 67

NIRSS Day 76 73 100 90 77

TAMDAR Day 45 72 87 53 —
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The satellite-based icing product described here, as

well as the icing altitude boundaries derived fromZt,Zb,

and Zfr, provide unique information about icing condi-

tions over broad areas and at resolutions not available

elsewhere that should contribute a substantial en-

hancement in aviation safety to regions susceptible to

heavy supercooled liquid water clouds. These icing

products, as well as many other cloud and radiation

products being derived routinely from operational sat-

ellite data, are available in digital and graphical formats

from NASA (http://angler.larc.nasa.gov).
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